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The propagator for the ani~otropic three-dimensional charged harmonic oscil- 
lator in the presence of a constant external magnetic field is calculated using 
the Schwinger action principle. 

1, I N T R O D U C T I O N  

Recently there has been a renewal in the interest of  calculating exact 
propagators for quadratical systems in quantum mechanics. The emphasis 
now is upon systems whose Lagrangians exhibit a nonlocal time dependence 
in the coordinates which are referred to as systems with memory kernel 
(Khandekar  et al., 1983a, 1983b; Brosens and Devreese, 1984; Cheng, 1984; 
Castrigiano and Kokiantonis, 1984). Except for some specific methods of 
calculation, the most popular  way of deriving the propagator  is via the 
Feynman path integral formulation of quantum mechanics (Feynman and 
Hibbs, 1965). In practice this approach is severely restricted because the 
art of  calculating functional integrals is at its very beginning and only a 
few of them can be readily evaluated. - 

A most dramatic example of  this situation shows up in a recent calcula- 
tion (Cheng, 1984) of  the propagator  corresponding to a three-dimensional 
anisotropic charged harmonic oscillator in the presence of a constant exter- 
nal magnetic field. The author reduces the problem to the calculation of 
certain one-dimensional path integral related to the problem of an harmonic 
oscillator with generalized memory driven by an external time dependent  
force. Apparently such path integral cannot be calculated exactly at the 
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present time and the author is only able to evaluate the particular case of 
zero frequency in the x direction. This limit does not even include the 
calculation for the propagator in the isotropic case made by Papadopoulos 
some years ago (Papadopoulos, 1971). 

In this paper we present the calculation of the propagator for the 
anisotropic three-dimensional charged harmonic oscillator in a constant 
magnetic field using the Schwinger action principle. As far as we know this 
propagator has not been calculated previously. 2 Even though the basic ideas 
underlying this principle are well known we feel that the simplicity it 
provides in the calculation of propagators associate d with quadratic systems 
is not fully appreciated. In general the calculation proceeds along the same 
lines as in the well-known case of the one-dimensional harmonic oscillator 
with constant frequency. The only surprises and complications that arise 
are only algebraic in nature and stem mainly from the solution of the 
operator equations of motion. Nevertheless, because we are dealing with 
quadratical systems, such equations are linear and their solution presents 
no more difficulties than in the classical problem. 

In the following we present the basic features of the Schwinger action 
principle that we will need for our calculation and refer the reader to the 
original source (Schwinger, 1970) and to a recent discussion with applica- 
tions (Urrutia and Hern~indez, 1984) for more details. The Schwinger action 
principle in quantum mechanics provides a differential characterization of 
the propagator in terms of the variations of  the Lagrangian operator. Once 
the operator equations of  motion for the dynamical variables are used the 
action principle reads (h = 1) 

8(x", t"[x', t ')= i(x", t"[~( t") - ~g(t')[x', t') (1) 

where 

c~(t) : p (t) tSx(t) - H ( t )  t~t(t) (2) 

is the generator of  time (St) and coordinate (,~x) displacements written in 
terms of the momentum [p( t ) ]  and Hamiltonian [H( t ) ]  operators. The 
generalization of  (1) and (2) to more degrees of  freedom is obvious. Let us 
remark that throughout this work we will only deal with dynamical operators 
of  the first kind whose variations are just real numbers. Equation (1) must 
be subsequently integrated with respect to ~x", ~x', ~t", ~t' after the right- 
hand side matrix element is evaluated. In order to perform this evaluation 
the equations of motion for all the operators involved must be solved in 
terms of  the operator boundary conditions x(t") and x(t ' )  whose action 

x( t")lx", t")= x"lx", t") (3) 
x( t')lx', t')= x'lx', t') 

2Please see the Added Comment at the end of the paper. 
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is immediate. This can always be done for quadratical systems (linear 
equations of motion) where the problem really reduces to solving the 
classical equations of motion with appropriate boundary conditions. The 
calculation of the part of the matrix element in (1) coming from the quadratic 
Hamiltonian will require the knowledge of  the commutator [x(t ' ) ,  x(t")] in 
order that each operator can be moved in front of the corresponding 
eigenvector to make use of (3). The contribution arising from the momenta 
is trivial to calculate because these operators are linear in x(t") and x(t'). 
Once the above steps are taken, (1) reduces to a purely numerical relation 
which can now be readily integrated. This task is simplified because the 
integrability conditions are automatically satisfied by virtue of the operator 
equations of motion (Urrutia and Hern~mdez, 1984). Thus we perform first 
the coordinate integrations generated by the momenta matrix elements in 
(1) which will lead to terms quadratic in the end point coordinates. These 
terms must be recovered as the result of the time integrations in the matrix 
elements arising from the Hamiltonian in virtue of the integrability condi- 
tions. Because of this we only have to pay attention to those time integrations 
which are not quadratical in the coordinates and which arise from the use 
of the commutator referred to above. 

In Section 2 we formulate the problem and discuss some related 
symmetry properties which are useful in solving the equations of motion. 
Section 3 contains the calculation of the propagator. Here we have proceeded 
in steps of increasing complexity starting from the case of zero harmonic 
potential, then going to the isotropic situation and finally to the general 
case. Of course this is not strictly necessary but it is very helpful in suggesting 
the convenient starting points for each more complicated case. 

2. FORMULATION OF THE PROBLEM 

We consider a three-dimensional charged harmonic oscillator, in the 
presence of  a constant magnetic field, described by the Hamiltonian 

1 H=~mf(Px mw "~2/ mto ~2 2" ] 
"Jt-TY ) "~ -~Py - -T  x )  "~-Pz] 

m 2 2 2 2 2 2 
"q-2-(~'~l X +II2y +f~3z ) (4) 

The coordinate system is chosen in such a way that the constant magnetic 
field points in the z direction and o)= qB/mc is the associated Lamor 
frequency. The Hamiltonian (4) corresponds to the Lagrangian used by 
Cheng (Cheng, 1984). At any time t, the operators x, y, z, Px, py, P~ satisfy 
the usual commutation relations which we do not bother to write. 
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We are interested in calculating the propagator (x", y", z", t"[x', y', z', 
t') for such system. The first obvious property we notice is that the problem 
is really two-dimensional because the z-motion decouples. In fact we have 

(x", y", z", t"lx' , y', z', t')= (x", y", t"lx', y', t')(z", t"lz' , t') (5) 

where (z", t"lz' , t') is the well-known propagator of a one-dimensional har- 
monic oscillator with mass m and frequency f~3. Thus we only need to be 
concerned with the x - y  propagator. 

The corresponding equations of motion obtained from the general 
relation A = i[A, H] are 

(6) 
:x=~py--~-'x) - m a r x  

oJ [ moJ \ 
lk, = - - ~ P x  +---f-Y) - m f ~ y  

As usual, the momenta Px and Pr can be eliminated after taking an extra 
time derivative in the first two equations and then substituting Px and/~y in 
the last ones. This yields the coupled system 

5/+ fI12x = to: (7) 

= 

whose appropriate solution constitutes the main difficulty of the method. 
We need to solve equations (7) introducing as boundary conditions the 
operators x(t"), y(t") and x(t ') ,  y(t ')  with eigenvectors ]x", y", t") and 
Ix', y',  t'), respectively. Because the system (7) is linear its general solution 
will be a superposition of independent solutions associated with each of 
the four boundary conditions. Let us consider first the pair of solutions 
related to the boundary condition x(t'). Then we must have 

x(t)  =x( t ' )F ( t ;  t", t') 
(8) 

y(t)  = x( t ' )G( t ;  t", t') 

where the numerical functions F and G satisfy the coupled equations 

iT+ f ~ G - -  -oJP (9) 
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with boundary conditions 

F( t ' ; t " , t ' )= l ,  F(t"; t" , t ' )=O 
(10) 

G(t ' ;  t", t ' )=0 ,  G(t"; t", t ' ) = 0  

The system (9) can be decoupled in the usual manner in such a way 
that F and G satisfy the quartic equation 

"Z'-t- (~"~2_1_ ['~2 4_ r _I_ ~'~ 12~*'~2 Z : 0 (11) 

whose linearly independent solutions are g!ven by cos W• sin W• The 
four roots + W• of the algebraic equation associated to (11) can be written 
a s  

w+ = a ( t o l +  to2) 
(12) 

W _  = l ( t o l  - to2) 

in terms of  the positive numbers 

tol  = [-(~'~1 "[- ~'~2) 2-~- 0)2] 1/2 
(13) 

to2 = [ ( n l  - n2)  2 + to211/2 

Of course we still have to pay attention to the coupled nature of F and G. 
For example, if we take 

F = a cos( Wt+ ~b) (14) 

with a and 4, constants and W either W+ or IV_, the corresponding G is 
given by 

t o w  
G =  \ W2_f~2] s i n ( W t + 6 )  (15) 

by virtue of (9). Moreover the coupling factor g satisfies 

t o W  W 2 - O  2 
(16) g-= 2 2 -  W - f ~  toW 

which is just another way of writing the algebraic equation associated to (11). 
It is interesting to remark that once we have obtained the explicit forms 

for F and G satisfying (9) and (10) the independent solutions having to 
do with the remaining boundary conditions can be easily generated from 
(8) using symmetry arguments. In fact, x(t") plays the same role of x(t') 
at the time t = t". Thus 

x( t) = x( t")F( t; t', t") 
(17) 

y( t) = x( t")G( t; t', t") 
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are the independent solutions related to x(t") which are obtained from (8) 
just by interchanging t' and t". 

In order to obtain the two remaining independent solutions we notice 
that the system (9) is invariant under the replacements 

Thus 

and 

x-~y, y o  -x ,  f~l ~- f~2 (18) 

x(t)  = -y ( t ' )G( t ;  t", t') 

y(t)  =y(t')/3(t; t", t') 
(19) 

x(t) =-y ( t " )G( t ;  t', t') 
(20) 

y(t) = y(t")/3(t; t', t") 

are the independent solutions corresponding to the operator boundary 
conditions y(t') and y(t"), respectively. H e r e / 3  and G are obtained from 
F and G after making the changes f~l <-~--~ f~2- Notice that this transformation 
leaves o~1 and to2 invariant as it is apparent from (13). 

The complete solution of our system (9) is then the sum Of the corre- 
sponding equations (8), (17), (19), and (20). 

3. EVALUATION OF THE PROPAGATOR 

In this section we calculate the propagator for our system. Even though 
it is not strictly necessary, we proceed in steps of increasing complexity 
starting from the case fll  = f~2 = 0, then considering the situation f~l = f~2 = f~ 
and finally dealing with the general case. We do this mainly because the 
simple cases contain very useful suggestions regarding the structure of the 
more complicated ones, thus allowing us to minimize the computational 
difficulties. Besides, the first two cases are already calculated in the literature 
which permit us to verify the correctness of our calculation. 

3.1. The Case ~'~1 "~ ~'~2 ~-~ 0 

This situation corresponds to the case where the charged particle does 
not feel any harmonic force in the x-y  plane. Here we have to1 = to2 = to, 
W+ = to, IV_ = 0 and the functions F and G are 

1 to( t"- t )  to ( t - t ' )  
F(t; t", t') s i n ( t o T / 2 ~ s i n ~ c o s j  ~ 

(21) 
1 t o ( t " - t )  . t o ( t - t ! )  

G(t; t", t ' )=  sin - - s m -  
sin(toT~2) 2 2 
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where T = t " -  t'. It can be readily seen that F and G satisfy equations (9) 
together with the boundary conditions (10). Following the symmetry con- 
siderations prescribed in the last section we can immediately write the 
general solution 

1 ~x(t') sin to ( t " -  t) t o ( t -  t') 
x(t) s in( toT/2)(  ~ c o s ~  

t o ( t " - t )  . t o ( t - t ' )  
+ X(t") COS - -  sin - -  

2 2 

to(t"-t) to( t -d)  
+ [ y ( t ' ) - y ( t " ) ]  s i n ~  s i n ~  (22) 

1( y(t) sin(toT/2) [x(t") x(t ')]  sin to ( t " -  t) . t o ( t -  t') - - - -  s i n -  

2 2 

to(t"-t) . to(t- t ' )  
+y(t") cos 2 sm 2 

to ( t " -  t) to(t - t ' ) )  
+ y( t') sin l (23) - - 7 -  cos 

For the application of the action principle we will need the momenta at 
the end points which are 

= , toT , 
px(t") - ~ { [ x ( t " ) - x ( t  ) ]co t -~- -y ( t  )} 

toT ,, ) 
px( t') = - ~  { [ x( t") - x( t') ] cot--~-- y( t ) ~ 

(24) 

py(t') = x( t") + [y( t") - y( t') ] cot 

From these expressions we can easily calculate the corresponding 
velocities according to equations (6). 

Now we are in position to obtain the partial variations of the transfor- 
mation function with respect to the end point variables according to the 
obvious generalization of (1) and (2). The variation with respect to the 
end-point coordinates can be readily evaluated because the momenta are 



82 Urrutia and Manterola 

linear in the position operators. The answer is 

i(x", y", t"lx' , y', t')-~--~ [ 8(x 'y" -  x"y') 

+ ~ COt - ~  8( ( x"-- x') 2 + (y"-- y')2) ] (25) 

The contribution coming from the variation of the end-points time variables 
is related to the Hamiltonian of the system which is quadratical in the 
position operators. The integrability conditions referred to in the Introduc- 
tion assure us that the integration with respect to T of such quadratical 
terms will reproduce the piece �89 2] arising 
from (25). In the process of calculating the matrix element of the quadratic 
combinations of position operators we will need the appropriate commu- 
tators in order to move each operator in front of its eigenvector. Such 
nonzero commutators are 

[x(t'), x(t")] = [y(t'), y(t")] = 
i 

sin toT 
m t o  

[x(t'), y(t")] = -[y(t ' ) ,  x(t")] = - - -  2i sin2 t o t  
mto 2 

(26) 

and they will generate the following purely time dependent contribution to 
the total variation of the transformation function 

-(x",  y", t"lx', y', t ')6(ln sin to_~) (27) 

Putting together the results (25) and (27) we arrive at the final result 

(x", y", ,"'r' v' t') A ~__~{ 
" ~ - ' J '  sin(toT/2) exp (x 'y"-x"y ' )  

+ �89 x')2+ (y" -  y,)2] cot - ~ }  (28) 

where the normalization constant A is independent of the end point variables 
and is fixed by comparing (28) with the well-known two-dimensional free 
particle limit T ~  0. We obtain 

i n t o  
A = (29) 

4 rri 
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and the result (28) coincides with previous calculations [Kennard (1927) 
and Papadopoulos (1971), among others]. 

3.2.  The  C a s e  1~1 = 1-12 = l-I 

This situation corresponds to a trivial extension of the calculation made 
by Papadopoulos (Papadopoulous, 1971) for the propagator corresponding 
to the charged isotropic harmonic oscillator in the constant external mag- 
netic field. Here to1 = (4~2+ w2) 1/2, to2 = ~o, and the coupling factors g• are 
still equal to 1. The functions F and G are now 

F(t; t", t') s i n ( ~ r / 2 )  sin 2 cos 
(3o) 

1 [ o91(t"--t ) to2(2-- t') ] 
G(t; t", t ' )-  sin(wiT~2) sin 2 sin 

which reproduce equation (21) in the limit f ~  0. Of course we can verify 
that equations (30) indeed satisfy the coupled system (9) with ~1 = f~2 = f~ 
together with the boundary conditions (10). The complete solution can 
again be generated using the symmetry properties of the previous section 
and the final form, which we do not write explicitly here, is completely 
analogous to equations (22) and (23) with the appropriate identification of 
wl and w2. Once more we will need the momenta at the initial and final times 

mt~ [ o91T _ ~ _ y ( t , )  sin ~__ T ] 
p~(t") = 2 sin(o~T/2) x(t") cos --~--- x(t') cos 

mtol [x(t")cos t~ ~ ~ sm --~--j . ~o2T] 
px(t') = 2 sin(oJ1T/2) -S- -x( t ' )  cos -y(t") 

(31) 
[ . ,o2T. , ,o,T . , .  ~_~  mwl x(t') sln-~---e yt t" ) cos--~--- y(t ) cos py(t") = 2 sin(to1T/2) 

moll ol l py(t')=2sin(~o~T/2) x(t")sin +y(t")cos ~ y ( t ' ) c o s - - ~ j  

The variation of the propagator with respect to the end-point coordinates 
can now be easily calculated and the result is 

' m~ I['1 wiT 2 ~ ~ " i(x", y", t"lx', y' , 
2 12 2 

t ) - -  - c o t - - 6 ( x "  +y"~+x'~+y '~) 

Cs~nl~----~2~/--- )~)6(x'x"+y'y")~ ~sin(t~ 6(x'y"-y'x")] (32) 
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This result correctly reproduces the equation (25) in the limit f~ ~ 0. The 
nonzero commutators of the end-point operators are 

[ x ( t ' ) , x ( t " ) ] = [ y ( t ' ) , y ( t " ) ] =  2i og~T o92 T - -  sin - ~ -  cos 
mo91 2 

(33) 
[x(t ' ) ,  y(t")] = -[yl(t'), x(t")] 2i o91T o92T = - sin - ~ -  sin 

mo91 2 

which are used in calculating the coordinate independent part of the elapsed 
time T = t " -  t' variation of the propagator. This contribution is 

. o91T~ 
- (x" ,  y", t"[x', y ' ,  t ')6 In sm --~--] (34) 

Recalling once more that the integrability conditions are automatically 
satisfied by virtue of the operator equations of motion we finally obtain the 
result 

A1 imwl  
(x", y", t"lx', y' ,  t') 

sin(o91T/2) exp 2 sin (ogl T / 2 )  

[sino92T , , , to2 T , , 
X - - - f - ( x  y ' - x " y  ) - c o s - - ~ - ( x " x  + y"y  ) [ 

1 o91 T, , , 2 -  t t 2 -  t 2 -  t2~l 
+ ~ c o s - ' ~ - t x  •  l -x  •  ) j  

where the normalization constant A~ is 

m (402 + o92)1/2 
A 1 - 

47ri 
The result (35) coincides with the one obtained 

(35) 

by Papadopoulos 
(Papadopoulous,  1971), after the identifications fY~ o91/2 and o9 ~ o92 are 
made. 

3 . 3 .  T h e  G e n e r a l  C a s e  

In this section we discuss the general situation where the harmonic 
oscillator potential is completely anisotropic and which generalizes all 
previous cases. Here o91 and o92 take their general values given in (13) and 
the coupling factors written in (16) are not equal to 1. In order to find the 
appropriate F and G we start from the following ansatz, suggested by the 
previous forms, 

o91(t"-- t) . o92(t- t') 
G(  t; t", t') = a sin - -  sm - -  

2 2 

o 9 2 ( t " - -  t )  . o 9 1 ( t - -  t ' )  
+/3 sin sin - -  (36) 

2 2 
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where a and 13 are constants to be determined. Obviously, G given above 
satisfies the boundary conditions (10) and the quartic equation (11) because 
it can be easily rewritten as a sum of cos( Wfl + 40. With the function G 
expressed in this form and using the coupling relation given by (14) and 
(15) we can immediately obtain the corresponding function F which we 
still want to write in a form similar to (21) and (30). The constants a and 
13 are determined at this stage of the calculation by requiring F to satisfy 
the boundary condition (10). The corresponding equations are 

sin ---~- = 1 

a w2T /3 w i T = 0  
-~(g++g_) sin 2 -2(g--g+) s in  2 

(37) 

with g• = g(W• according to the definition (16). Solving for a and/3 we 
obtain 

2oJl~1p 
a = p2_q2 

q 
/3 ~ - - 0 g  

P 

(38) 

where we have introduced the notation 

wiT 
p = oJ2(~2+~1) s i n -  

2 

oJ2T 
q = O)1(~'~2-- ~ 1 )  sin - -  

2 

(39) 

In performing this calculation we have made use of the properties 

0) 1 (~'~ 1 -  ~'~2) 
g + + g -  

o9~ 1 

~o2( f~l + f~2) g+-g- 
(40) 

which are just consequence of the facts that W2+, W 2 _ are the roots of (16) 
together with the definitions (12). 

Now we go back to the function F. When written in terms of the basic 
functions cos( W~t+ eh) it will contain the products ag•177 of the para- 
meters appearing in (38) with the coupling factors (40). We have chosen 
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to eliminate g• in favor of ce and/3 via the equations (37), which leads to 
the following expression for F: 

1 I ce2 0)1(t"- t) to2(t- t') 
F(t ;  t", t') ce2 - /32 . s in (~T/2)  sin 2 cos 

/32 0)2(t"- t) 0),(t - t') 
sin cos 

sin( 0)2 T /2)  2 2 

1 wl ( t " -  t) 0)2(t - t') 
+a/3 s i n ( ~ T / 2 )  cos 2 sin 

1 0)2(t"-t) . w l ( t - t ' ) ] ]  
(41) sin(o)1T/2) cos 2 sm 2 

Let us notice that q =/3 = 0 and a = -1/sin(o)1T/2) in the case 1)1 = ~')2 = ~'~" 
Thus equations (36) and (41) reduce to (30). From equation (36) and (41) 
the general solution can now be obtained in the usual manner. We will only 
write the expressions that are directly used in the rest of the calculation 
and which refer only to the end points. The momenta operators are given by 

p~( t") = MlX(  t') + M2x( t") - M3y( t') + M4y( t") 

Px (t') = - M 2 x ( t ' )  - Mix( t" )  + M4y( t') - M3))(t") 
(42) 

py(t") = M3x( t') + M4x( t") + )(41y( t') +/17/2y(t") 

py(t') = M4x( t') + M3x( t") - f l2y(t ' )  -/~rly(t") 

which are simply related to the corresponding velocity operators. The 
auxiliary functions Mi (i = 1, 2, 3, 4) are 

('010)2 // 0)2T+ 0) 1T'~ 
M 1 -  pZ_q2121~P c o s t  q - - c o s - y )  

M 2  0)10)2 ~ // 0 ) i T  l_ (-o2T~ 
=p2-q2S~l~  p c ~  2 q cos ---~---J 

(43) 
2tof~1122 pq 

M3 - p2_ q2 2 2 
1)2-1)i 

0) ~ 2 -  f~l 2 
M 4 _ 2 ( p ~__ q 2 ) ( _~2_2_2_~l p ~ -  ~ ~ q 2 +1) ' 2~ 

The correspondingfunctions 5~/~ are obtained from Mi by changing 111 ~ f~2. 
Notice that M3 = M3 and M4 = -h~r4. In writing the equations (43) we have 
made extensive use of the relations (38). 
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The change of the transformation function with respect to the end-point 
coordinates, generated by the momentum operators, is now given by 

[ - 
C~m -~(x"~ + x'~) +-~ ~(y"~ + y'~+ ~ ( x ' x  ") i(x", y", t"lx' , y', z z 

--1 

+ )(4~ 6 (y'y") + M46 (y"x" - y 'x ')  + M36 (x'y" - y'x") ~ (44) 

which reduces to (32) in the limit ~1 = g2 = f/- 
The commutators employed in the evaluation of the change of the 

propagator coming from the Hamiltonian are 

i ~/ ,  
[x (C) ,  x ( t " ) ]  - 

m M  

i M~ 
[y ( t ' ) ,  y(C')]  . . . .  (45) 

m M  

[y( t'), x(  t") ] = --[x(t'), y( t") ] -- 
m M 

where M = M~+M11{41 is given by 

2 2 oJ lwzf~l~2 
M = pZ__q2 (46) 

The calculation is completed by giving the coordinate-independent contribu- 
tion to the elapsed time variation of the propagator which is 

- (x" ,  y", t"lx' , y', t')6(ln( p 2 - q2)1/2) (47) 

Collecting equations (44), (47) and recalling the integrability properties we 
obtain the final result: 

(x", y", t"lx', y', t') = a2( p 2 - q2)-1/2 exp im[�89 + x "2) + �89 + y,,2) 

+ M~x'x"+ M~y'y"+ M 4 ( y " x " - y ' x ' )  + M3(x ' y " - y ' x " ) ]  
(48) 

where the normalization constant A s is 

A2 = 2~---~ (O10)2(~c)-1~'~2) 1/2 (49) 

The propagator (48) constitutes the main result of this paper and when 
substituted in equation (5) gives the general expression for the transforma- 
tion function of a charged particle in an anisotropic oscillator well in the 
presence of an external magnetic field. 
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Added  Comment. After our calculation was completed and this paper 
was written we became aware of  the very recent work o f  Kokiantonis  and 
Castrigiano (1985) where the same problem is solved. Nevertheless,  we 
decided to submit our paper for publication mainly for two reasons: 

(i) Our calculation constitutes an independent verification o f  the 
above-mentioned result since we use a method different from theirs. 

(ii) We present a detailed account o f  the calculation where the 
laborious algebraic manipulations are minimized by the adequate use of  
symmetry considerations together with information obtained from simpler 
cases. 

We have explicitly verified that our result (48) for the propagator 
coincides with the one obtained by Kokiantonis  and Castrigiano (1985) 
after the fol lowing identifications between our paper and theirs are, respec- 
tively, made 

W~ --- �89 • = , ~  

p2 _ q2 = oo2wxwyD 

M 1 = a3 a l  a5 a6 
2 0 '  M 2 = D  ' M3 = 2 0 '  M4 = 2--D 
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